#!/usr/bin/env python3 # Based on https://www.reddit.com/r/zfs/comments/s0gxp0/ok_i_made_it_tool_to_show_io_for_individual/ # BSD 2-Clause License # # Copyright (c) 2022, Openoid LLC, on behalf of the r/zfs community # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import copy import math import os import re import shutil import signal import sys import time PROGRAM_VERSION = '2.0.2-dev' # We have little interesting to do with these signals - restore default handlers # so our WIFSIGNALED() state propagates properly to the shell signal.signal(signal.SIGINT, signal.SIG_DFL) # Docs warn against this, but we're not writing to anything but stdout/err. # If we ever need to restore standard Python behaviour, catch BrokenPipeError in # our print() calls, restore the handler and then re-raise the signal. signal.signal(signal.SIGPIPE, signal.SIG_DFL) def fail(message): """Print message to stderr and exit with a failure""" print(message, file=sys.stderr) sys.exit(1) # Platform specific section # # Must implement: # # DatasetDict = dict[dataset_name=str, timestamp=int|str, reads=int|str, # writes=int|str, nread=int|str, nwritten=int|str, # nunlinks=int|str, nunlinked=int|str] # FetchDatasets(pools=Optional[list[str]]): Callable: Iterable[DatasetDict] # # i.e. a callable factory (likely a class) that takes an optional list of pools, # and returns a callable that returns a new batch of dicts conforming to # DatasetDict. # # timestamp is a nanosecond monotonic counter, e.g. time.monotonic_ns() if sys.platform.startswith("linux"): import glob class FetchDatasets: def __init__(self, pools=None): if pools: patterns = map(glob.escape, pools) else: patterns = ["*"] self.globs = [ os.path.join("/proc/spl/kstat/zfs", pattern, "objset-*") for pattern in patterns ] def __call__(self): datasets = ( self.parse_dataset(file) for pattern in self.globs for file in glob.glob(pattern) ) return list(filter(None, datasets)) @staticmethod def parse_dataset(file): """Parse a single ZFS objset file""" # Shortened example of these files: ############################################# # 31 1 0x01 7 2160 6165792836 1634992995579 # name type data # dataset_name 7 rpool/ROOT/default ############################################# # Field 7 of the header is a nanosecond data snapshot timestamp. # Conveniently, dataset names may not contain spaces. try: with open(file, "r", encoding="latin-1") as f: header, _fieldnames, *fields = [line.split() for line in f] fields.append(("timestamp", None, header[6])) return { field[0]: field[2] for field in fields if len(field) > 2 } except FileNotFoundError: # Datasets may be destroyed between our globbing and opening return None def preflight(): try: with open("/sys/module/zfs/version", "r", encoding="latin-1") as f: version = f.read().rstrip() match = re.match(r'^(\d+)\.(\d+)', version) if not match: raise ValueError(f"could not parse '{version}'") major, minor = int(match.group(1)), int(match.group(2)) if major == 0 and minor < 8: fail(f"OpenZFS {major}.{minor} does not support dataset statistics. Please update to 0.8 or higher.") except (ValueError, OSError) as e: fail(f"Unable to determine OpenZFS version from /sys/module/zfs/version: {e}") preflight() elif sys.platform.startswith("freebsd"): try: # Attempt to use py-sysctl if available for best performance import sysctl def fetch_sysctl(oids): return (value for oid in oids for value in sysctl.filter(oid)) except ImportError: import subprocess from collections import namedtuple SysctlValue = namedtuple('SysctlValue', ['name', 'value']) def fetch_sysctl(oids): r = subprocess.run(['/sbin/sysctl', '-e', '--', *oids], capture_output=True, check=False, encoding='latin-1') stats = (line.split("=", 2) for line in r.stdout.split("\n")) return (SysctlValue(*nv) for nv in stats if len(nv) == 2) from collections import defaultdict class FetchDatasets: def __init__(self, pools=None): # We're interested in kstat.zfs.*.dataset.objset-*.* if pools: self.oids = tuple(f'kstat.zfs.{pool}.dataset.' for pool in pools) else: self.oids = ('kstat.zfs.',) def __call__(self): timestamp = time.monotonic_ns() datasets = defaultdict(lambda: {'timestamp': timestamp}) # Note objset ID's are only unique to individual pools for ctl in fetch_sysctl(self.oids): name = ctl.name.rsplit(".", 4) if len(name) == 5 and name[2] == 'dataset': _, pool, _, objset, oid = name datasets[(pool, objset)][oid] = ctl.value return datasets.values() def preflight(): match = re.match(r'(\d+)\.(\d+)', os.uname().release) if not match: fail(f"Unable to determine FreeBSD version from {os.uname().release}") major, minor = int(match.group(1)), int(match.group(2)) if major < 12 or (major == 12 and minor < 2): fail(f"FreeBSD {major}.{minor} does not support dataset statistics. Please update to 12.2 or higher.") preflight() else: fail("Unsupported platform: " + sys.platform) ################################################################################ # Core type class Dataset: """ ZFS dataset statistics over a timespan in seconds """ name = '' reads = 0 nread = 0 writes = 0 nwritten = 0 nunlinks = 0 nunlinked = 0 timespan = 0 def __init__(self, name=''): self.name = name @classmethod def from_dict(cls, data): d = cls(data['dataset_name']) d.reads = int(data['reads']) d.nread = int(data['nread']) d.writes = int(data['writes']) d.nwritten = int(data['nwritten']) d.nunlinks = int(data.get('nunlinks', 0)) d.nunlinked = int(data.get('nunlinked', 0)) d.timespan = int(data['timestamp']) / 1e9 return d @property def rareq_sz(self): return self.nread / self.reads if self.reads else 0 @property def wareq_sz(self): return self.nwritten / self.writes if self.writes else 0 @property def operations(self): return self.reads + self.writes @property def throughput(self): return self.nread + self.nwritten def is_nonzero(self): """True if this DatasetDiff has any non-zero deltas""" return self.operations or self.throughput or self.nunlinks or self.nunlinked def per_second(self): """ Return a copy of Dataset with values normalized to per-second rates """ if self.timespan: d = copy.copy(self) d.reads /= self.timespan d.nread /= self.timespan d.writes /= self.timespan d.nwritten /= self.timespan d.nunlinks /= self.timespan d.nunlinked /= self.timespan d.timespan = 1.0 return d return self def __sub__(self, other): """ Return a new Dataset with this one's values subtracted from other """ d = copy.copy(self) d.reads -= other.reads d.nread -= other.nread d.writes -= other.writes d.nwritten -= other.nwritten d.nunlinks -= other.nunlinks d.nunlinked -= other.nunlinked d.timespan -= other.timespan return d def __add__(self, other): """ Return a new Dataset with this one's values added to other Note timespan is set to the maximum of the two values instead of being added. """ d = copy.copy(self) d.reads += other.reads d.nread += other.nread d.writes += other.writes d.nwritten += other.nwritten d.nunlinks += other.nunlinks d.nunlinked += other.nunlinked d.timespan = max(d.timespan, other.timespan) return d ################################################################################ # String formatting class Column: """ Formats (translates raw value to string) and optionally justifies (adjusts the string to fit within a given width) a single column. """ def __init__(self, key, heading, width=0, format=str, just=None): self.key = key self.heading = heading self.width = width self.format = format self.just = just def render(self, values): return self.justify(str(self.format(values[self.key]))) def render_heading(self): return self.justify(self.heading) def justify(self, string): return self.just(string, self.width) if self.just else string class ColumnGroup: """ A simplified column that justifies a string to span the set of Column objects it is meant to cover. Does not support formatting. Width here is the size of separators not covered by the raw width of the spanned columns themselves. """ def __init__(self, heading, columns, width=0, just=str.center): self.heading = heading self.columns = columns self.width = width self.just = just def group_width(self): return self.width + sum((c.width for c in self.columns)) def render_heading(self): return self.justify(self.heading) def justify(self, string): return self.just(string, self.group_width()) if self.just else string class ColumnFormatter: """ A buffered formatter for columnar data with optional group headings. """ def __init__(self, column_separator=' ', row_separator='-', buffer=None): self.columns = [] self.column_index = {} self.groups = None self.column_separator = column_separator self.row_separator = row_separator self.buffer = buffer if buffer is not None else [] def add_column(self, name, cls=Column, **args): self.column_index[name] = len(self.columns) self.columns.append(cls(name, **args)) def add_group(self, name='', colspan=1, just=str.center): """Add a group heading that spans the previous colspan columns""" if self.groups is None: self.groups = ColumnFormatter(column_separator=self.column_separator, buffer=self.buffer) self.groups.add_column(name, cls=ColumnGroup, columns=self.columns[-colspan:], width=len(self.column_separator) * (colspan - 1), just=just) def set_column_width(self, key, width): """Set the width of the column""" self.columns[self.column_index[key]].width = width def get_printed_width(self, exclude=()): """ Return the printed width of columns and their separators, excluding the keys in exclude. """ return sum((c.width + len(self.column_separator) for c in self.columns if c.key not in exclude)) def print_row(self, **data): """Add a row of data to be formatted into the internal buffer""" formatted = (column.render(data) for column in self.columns) self.print(self.column_separator.join(formatted)) def print_header(self): """Add headings and optionally group headings to the internal buffer""" if self.groups: self.groups.print_header() formatted = (column.render_heading() for column in self.columns) self.print(self.column_separator.join(formatted)) def print_divider(self): """ Add a line of column_separator in the space given to each column to the internal buffer. """ self.print( self.column_separator.join( [''.ljust(c.width, self.row_separator) for c in self.columns])) def print(self, string, end="\n"): """ Adds the specified string to the internal buffer. Must eventually be followed by a call to flush() """ self.buffer.append(str(string) + end) def flush(self, lines=None): """Print the internal buffer, up to the optional lines limit.""" buffer = ''.join(self.buffer) if lines: buffer = "\n".join(buffer.split("\n", lines)[:lines]) print(buffer, end='') self.buffer.clear() class NumberToHuman: """Number formatting functions""" SIZE_PREFIX = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') FORMATS = ('{:.2f}{}', '{:.1f}{}', '{:.0f}{}') @classmethod def formatter(cls, length, decimal=False): """ Return a function that will format a number to a shortened SI decimal or binary form that fits within a given length. """ divisor = 1000 if decimal else 1024 formats = cls.FORMATS size_prefix = cls.SIZE_PREFIX size_prefix_max = len(size_prefix) - 1 powers = [pow(divisor, i) for i in range(len(size_prefix))] def fmt(num): n = num index = 0 while n >= divisor and index < size_prefix_max: n /= divisor index += 1 u = size_prefix[index] if index == 0 or num % powers[index] == 0: return str(int(n)) + u for fmt in formats: ret = fmt.format(n, u) if len(ret) <= length: return ret return ret return fmt class DatasetName: """Dataset name formatting functions""" PATH_INDENT = ' ' ELLIPSIS = '+' @classmethod def shorten(cls, path, limit): """Shorten a dataset name to fit within limit""" if len(path) <= limit: return path # Always display the pool name components = path.split('/', 1) ret = components[0] if len(components) > 1: last = components[1][-(limit - (len(ret) + len(cls.ELLIPSIS) + 1)):] ret += '/' + cls.ELLIPSIS + last return ret @classmethod def _indent(cls, name, depth, limit): """Indent name by depth PATH_INDENTs constrained by limit""" if (len(cls.PATH_INDENT) * depth) + len(name) > limit: return (cls.ELLIPSIS + name).rjust(limit - 1)[:limit] return (cls.PATH_INDENT * depth) + name @classmethod def indent(cls, name, last_path, limit): """ Take a name and a prior split path (or an empty list), returning a tuple of the indented set of lines to print as a prefix up to this component, the indented current component, and the current path leading to this one to be passed to the next call to indent_format. """ cur_path = name.split('/') common = os.path.commonprefix([last_path, cur_path]) prefix = [] for i, segment in enumerate(cur_path[len(common):-1]): prefix.append(cls._indent(segment, len(common) + i, limit)) last_segment = cls._indent(cur_path[-1], len(cur_path) - 1, limit) return ("\n".join(prefix), last_segment, cur_path) @classmethod def indent_len(cls, path): """ Calculate the maximum width of this path as rendered by print_format """ segments = path.split('/') return (len(segments[0:-1]) * len(cls.PATH_INDENT)) + len(segments[-1]) ################################################################################ # Argument processing, column configuration, and main loop SORTS = { 'name': {'key': lambda x: x.name}, 'operations': {'key': lambda x: x.operations, 'reverse': True}, 'reads': {'key': lambda x: x.reads, 'reverse': True}, 'writes': {'key': lambda x: x.writes, 'reverse': True}, 'throughput': {'key': lambda x: x.throughput, 'reverse': True}, 'nread': {'key': lambda x: x.nread, 'reverse': True}, 'nwritten': {'key': lambda x: x.nwritten, 'reverse': True}, } SORT_DISPLAY = list(SORTS.keys()) SORT_ALIAS = { 'operations': ['io', 'ops', 'iops'], 'reads': ['read', 'rps'], 'writes': ['write', 'wps'], 'throughput': ['bandwidth'], 'nread': ['nreads', 'rmbps'], 'nwritten': ['nwrite', 'nwrites', 'wmbps'], } SORTS.update({alias: SORTS[name] for name, aliases in SORT_ALIAS.items() for alias in aliases}) def parse_args(): """Parse command-line arguments list""" parser = argparse.ArgumentParser(description='iostat for ZFS datasets', add_help=False) parser.add_argument('dataset', type=str, nargs='*', help='ZFS dataset') parser.add_argument(argparse.SUPPRESS, metavar='interval [count]', nargs='?', help='seconds between reports and number of reports') parser.add_argument('-c', dest='count', type=int, help='number of reports generated') parser.add_argument('-D', dest='decimal', action='store_true', help='display size in decimal powers of 1000 instead of 1024') parser.add_argument('-e', dest='exact', action='store_true', help='display exact values without truncation or scaling') parser.add_argument('-H', dest='scripted', action='store_true', help='scripted mode, omit headers and tab-separate fields') parser.add_argument('-h', '--help', action='help', help='display this help message and exit') parser.add_argument('-I', dest='per_interval', action='store_true', help='display totals since the last report rather than averaged per-second') parser.add_argument('-i', dest='interval', type=float, help='interval between reports in seconds') parser.add_argument('-N', dest='header_once', action='store_true', help='display headers at most once') parser.add_argument('-n', dest='non_recursive', action='store_true', help='omit child datasets when filtering') parser.add_argument('-o', dest='overwrite', action='store_true', help='overwrite old reports in terminal') group = parser.add_mutually_exclusive_group() group.add_argument('-P', dest='fullname', action='store_true', default=None, help='display dataset names on a single line') group.add_argument('-p', dest='fullname', action='store_false', default=None, help='display dataset names as an abbreviated tree') parser.add_argument('-S', dest='sum_children', action='store_true', help='include statistics for child datasets in parents') parser.add_argument('-s', dest='sort', type=str.lower, default='name', choices=SORTS.keys(), metavar='{%s}' % ','.join(SORT_DISPLAY), help='sort by the specified field') parser.add_argument('-T', dest='timestamp', choices=['u', 'd'], help='prefix reports with a Unix timestamp or formatted date') parser.add_argument('-V', '--version', action='version', version='%(prog)s ' + PROGRAM_VERSION, help='display version number and exit') parser.add_argument('-x', dest='extended', action='count', default=0, help='display extended statistics: once for average I/O size, \ twice for unlink queue') parser.add_argument('-y', dest='skip', action='store_const', default=0, const=1, help='omit the initial "summary" report') parser.add_argument('-z', dest='nonzero', action='store_true', help='omit datasets with zero activity') args = parser.parse_args() # Handle [interval [count]] def is_positive_float(value): try: value = float(value) # We want to avoid parsing 'inf' and 'nan', as these are valid pool names # NaN always compares False with another float, so just guard against inf return value > 0.0 and not math.isinf(value) except ValueError: return False if len(args.dataset) > 0 and is_positive_float(args.dataset[-1]): args.interval = float(args.dataset.pop()) if len(args.dataset) > 0 and is_positive_float(args.dataset[-1]): args.count = int(round(args.interval)) args.interval = float(args.dataset.pop()) # Past here interval and count are either None or non-zero if args.count is not None and not args.count > 0: parser.error('count must be positive') if args.interval is not None and not is_positive_float(args.interval): parser.error('interval must be positive') # If there's a count but no interval, default to one second if args.count and not args.interval: args.interval = 1.0 # If neither are specified, default to one iteration and one second if not (args.count or args.interval): args.count = 1 args.interval = 1.0 # Sanitize specified datasets according to ZFS rules. # # This helps defend against platform-specific code being passed arbitrary # strings which might interact unpredictably with constructing paths or # command lines, and also makes typos a bit more obvious to the user. # # Technically the regexp is enough, but try to provide helpful error messages # for common errors. dataset_pattern = re.compile(r'\A[a-zA-Z][a-zA-Z0-9_.:-]*(?:/[a-zA-Z0-9_.:-]+)*\Z') for ds in args.dataset: if ds.endswith('/'): parser.error(f"trailing slash in dataset name: '{ds}'") if '//' in ds: parser.error(f"empty component in dataset name: '{ds}'") if not dataset_pattern.match(ds): parser.error(f"invalid dataset name: '{ds}'") # Enable full paths if we're not sorting by name or in nonzero mode, unless otherwise specified if args.fullname is None: args.fullname = args.sort != 'name' or args.scripted or args.exact or args.nonzero if args.overwrite and not sys.stdout.isatty(): parser.error('overwrite mode only supported in a terminal') if args.extended > 1 and sys.platform.startswith("freebsd12"): print("warning: unlinks statistics require FreeBSD 13+", file=sys.stderr) return args def create_column_formatter(args): """Create a ColumnFormatter instance configured for the given args""" if args.scripted: column_separator = "\t" name_just = None num_just = None field_width = 0 else: column_separator = ' ' name_just = str.ljust num_just = str.rjust field_width = 11 if args.exact else 5 if args.exact: num_format = round bytes_format = round else: num_format = NumberToHuman.formatter(length=field_width, decimal=True) bytes_format = NumberToHuman.formatter(length=field_width, decimal=args.decimal) # Define our two types of data column from a shared base style base = {'width': field_width, 'just': num_just} num = {'format': num_format, **base} byte = {'format': bytes_format, **base} formatter = ColumnFormatter(column_separator=column_separator, row_separator='-') formatter.add_column('name', heading='dataset', just=name_just) formatter.add_group() formatter.add_column('reads', heading='read', **num) formatter.add_column('writes', heading='write', **num) formatter.add_group('operations', 2) formatter.add_column('nread', heading='read', **byte) formatter.add_column('nwritten', heading='write', **byte) formatter.add_group('throughput', 2) if args.extended > 0: formatter.add_column('rareq_sz', heading='read', **byte) formatter.add_column('wareq_sz', heading='write', **byte) formatter.add_group('opsize', 2) if args.extended > 1: formatter.add_column('nunlinks', heading='queue', **num) formatter.add_column('nunlinked', heading='done', **num) formatter.add_group('unlinks', 2) return formatter class DatasetDiffIter: """ Take an argument object and create an iterator over lists of Dataset diffs with appropriate filtering and sorting applied. """ def __init__(self, args): # Configure a chain of iterators appropriate for our arguments self.iter = self._diff_iter(args) if args.nonzero: self.filter(lambda d: d.is_nonzero()) if args.sum_children: self.apply(self._sum_children) if args.dataset: # Cast to a faster structure for lookups # In my testing a set is faster even for a single item. args.dataset = set(args.dataset) if args.non_recursive: # Look only for the exact datasets specified self.filter(lambda d: d.name in args.dataset) else: # Also look for any that start with those plus a slash starts = tuple((ds + '/' for ds in args.dataset)) self.filter(lambda d: d.name in args.dataset or d.name.startswith(starts)) if args.interval: self.iter = self._interval_iter(self.iter, args.interval) for _ in range(args.skip): next(self.iter, None) if args.count: self.iter = self._take_iter(self.iter, args.count) if not args.per_interval: self.map(lambda d: d.per_second()) if args.sort != 'name': # Sorting by name first makes it a secondary sort field self.apply(lambda diffs: sorted(sorted(diffs, **SORTS['name']), **SORTS[args.sort])) else: self.apply(lambda diffs: sorted(diffs, **SORTS['name'])) if not args.overwrite: # Filter out empty iterations if we're in normal mode. # We must coerce diffs into a list because this filters by the count, # and it may be a generator at this point self.iter = filter(None, map(list, self.iter)) # Ensure we return a list from each iteration self.apply(list) def __iter__(self): return self.iter def filter(self, operation): """Filter diffs by operation""" self.iter = (filter(operation, diffs) for diffs in self.iter) def map(self, operation): """Apply operation to each diff""" self.iter = (map(operation, diffs) for diffs in self.iter) def apply(self, operation): """Apply operation to each set of diffs""" self.iter = (operation(diffs) for diffs in self.iter) @classmethod def _diff_iter(cls, args): """Iterate over Iterable[Dataset] deltas""" pools = {dataset.split('/')[0] for dataset in args.dataset} dataset_fetcher = FetchDatasets(pools) def fetch_datasets(): return {d.name: d for d in map(Dataset.from_dict, dataset_fetcher())} summary = fetch_datasets() cls._validate_dataset_args(args, summary.keys()) yield summary.values() prevdatasets = summary for datasets in iter(fetch_datasets, None): yield (datasets[key] - prevdatasets[key] for key in datasets.keys() & prevdatasets.keys()) prevdatasets = datasets @staticmethod def _validate_dataset_args(args, found): """ If any specified datasets are not present in the found list, exit with an error message. """ failed = False for ds in args.dataset: if ds in found: continue children = any(os.path.commonpath((ds, path)) == ds for path in found) if args.non_recursive: if children: # Accept unmounted datasets as arguments if we're going to # sum child datasest into them if args.sum_children: continue msg = 'mounted' else: msg = 'found' print(f"dataset not {msg}: '{ds}'", file=sys.stderr) failed = True elif not children: print(f"dataset not found: '{ds}'", file=sys.stderr) failed = True if failed: sys.exit(1) @staticmethod def _sum_children(diffs): """ Return Iterable[Dataset] for Iterable[Dataset] having added child datasets to parents, creating them if necessary. """ sums = {} for diff in diffs: for depth in range(diff.name.count('/') + 1): path, *_ = diff.name.rsplit('/', depth) if path in sums: sums[path] += diff else: sums[path] = Dataset(path) + diff return sums.values() @staticmethod def _interval_iter(it, interval): """Yield an item from the provided Iterable every interval seconds""" deadline = time.monotonic() + interval for item in it: yield item sleep = deadline - time.monotonic() if sleep > 0: time.sleep(sleep) else: # We've fallen behind, possible due to being suspended, or the user # has asked for an interval below our redraw time. # Reset the interval, repeat the loop, and hope for better next time. deadline = time.monotonic() + interval deadline += interval @staticmethod def _take_iter(it, count): """Yield at most count items from Iterable""" for _ in range(count): yield next(it, None) def main(): args = parse_args() formatter = create_column_formatter(args) stats_width = formatter.get_printed_width(exclude=('name')) calc_name_width = len if args.fullname else DatasetName.indent_len max_name_width = 0 isatty = sys.stdout.isatty() for iteration, diff in enumerate(DatasetDiffIter(args)): width, height = shutil.get_terminal_size() width, height = width or 80, height or 24 avail_width = width - stats_width max_name_width = max(max_name_width, max((calc_name_width(d.name) for d in diff), default=10)) name_width = max(10, min([avail_width, max_name_width])) formatter.set_column_width('name', name_width) if args.overwrite: # Clear the screen and move the cursor to the upper-left formatter.print("\033[2J\033[1;1H", end='') if iteration > 0 and not (args.scripted or args.overwrite): formatter.print_divider() if args.timestamp == 'u': formatter.print(int(time.time())) elif args.timestamp == 'd': formatter.print(time.strftime('%c')) if not args.scripted: if (iteration == 0 or not args.header_once and (args.overwrite or isatty and iteration % height == 0)): formatter.print_header() formatter.print_divider() last_path = [] for d in diff: if args.fullname: name = d.name if args.exact else DatasetName.shorten(d.name, name_width) else: prefix, name, last_path = DatasetName.indent(d.name, last_path, name_width) if prefix: formatter.print(prefix) formatter.print_row(name=name, reads=d.reads, writes=d.writes, nread=d.nread, nwritten=d.nwritten, rareq_sz=d.rareq_sz, wareq_sz=d.wareq_sz, nunlinks=d.nunlinks, nunlinked=d.nunlinked) formatter.flush(lines=height if args.overwrite else None) if __name__ == '__main__': main()